VII.

On the Height of the Himalaya Mountains.

By H. T. COLEBROOKE, Esq:

WHEN I presented to the Society the narrative of a journey, performed by Lieutenant Webr and Captain Raper, to explore the sources of the Ganges, I had occasion to notice the observations mentioned to have been made for determining geometrically the altitude of remarkable peaks of the snowy mountains, and the inference which appeared to be fairly deducible, that this chain of mountains is among the most elevated in the known world, neither surpassed nor rivalled by any other but the Cordillera of the Andes*. I should have been justified by the premises in saying more: but I thought it right to speak thus guardedly; not having been then enabled to examine the particulars of the altitudes taken, the distances measured, and the calculations founded on them; nor to procure barometrical measurements tending to confirm or to correct conclusions drawn from those grounds. But having been since furnished with further observations taken by Lieutenant Webs, in prosecution of the same inquiry, and having compared them as well with those before made by him, and by the late Lieutenant-Colonel Colebrooke, as with LieutenantColonel Crawrord's labours in the pursuit of the same

[^0]inquiry, I consider the evidence to be now sufficient to authorize an unreserved declaration of the opinion, that the Himalaya is the loftiest range of Alpine mountains which has been yet noticed, its most elevated peaks greatly exceeding the highest of the Andes.

This had been long suspected, or rather had been very generally believed, in India, upon less conclusive evidence than will now be submitted to the public. It was remarked, that this chain of mountains constantly covered with snow is visible from the plains of Bengal at the distance of 150 miles * (it might have been said at a still greater distance). This fact demonstrates great elevation. For the peak of Teyde, or Teneriffe, measuting nearly 12,000 feet \dagger, is discernible in clear weather at a distance of 120 miles, and appears like blue vapour scarcely darker than the sky; and Chimborazo, the highest peak of the Airdes, ascertained to be more than 20,000 feet high \ddagger, is seen at a distance of little more than 60 leagues, the rest of the Cordillera of the Andes being then concealed from view : but the Himdlaya chain of mountains is visible in the horizon, as a continued line extending through more than two points of the compass, at a distance equal to that last mentioned, appearing in clear weather like white cliffs, with a very distinctly defined outline.

To justify the assertion, that the distatice, at which the chain of snowy mountains continues to be visible, exceeds 150 miles, it may be sufficient to mention, that it is seen bearing Easterly of North, from Patna and from other stations (as Bhagalpar, \&c.), on the Southern bank of the Ganges. Now the latitude of Patna, by astronomical observation, is $25^{\circ} 96^{\prime} \S$; and that of Cat'h-

[^1]mandé, newry due North of it, is $97^{\circ} 49^{\prime *}$, the difference being 126 geographic, or about 146 English, miles. But the nearest of the Himalaya mountains are yet distant in a horizontal line above $\mathbf{2 5}$ miles from the last-mentioned town; more than one valley and intermediate ridge being interposed ; some of which, to a distance of tee meites, have been visited by Eurcpeans, without approaching within several days' travelling distance of the foot of the Himalaya \dagger.

The continuation of the same chain of mountrins divides Butan from Tibet, and is distinctly visible from the plains of Bengal. Captain Turner and Mr. Slundirs, on their journey to Tisholumbo, after traversing Butdan and crossing the frontier of Tibet, found themselves near a range of mountains covered with everlasting snow, which seemed to be but two miles distant from their route. Captain T. particularly noticed a conspicuous peak held in high veneration by the Hindus, and named Chamalcuri. Both the travellers were satisfied, the one from the remarkable form of the peak, the other from the height and bearings of the range, that the mountains which they then viewed are the same which are seen from Purnea, Rajmahl, and other places in Bengal \ddagger. Now, according to the survey of Captain Turner's route, Chamalári is placed in Lat. $98^{\circ} 5^{\prime}$ Long. $89^{\circ} 18^{\prime}$; a position no less than 165 geographic miles from Purnea, and 200 from Rajmahl, which is situated in Lat. $25^{\circ} 3^{\prime}$ and Long. $87^{\circ} 44^{\prime}$ by observation §. From a commanding eminence, on the frontier of Tibet, the travellers had an extensive view of the mountains of Buttin, covered with verdure to the very tops; and it appears, from what is said by them, that Bután contains no mountains on which snow con-

[^2]tinues during all seasons of the year, and few on which it remains until the middle of summer. These circumstances seem to establish, beyond question, the fact, that the snowy range, of which Chamalari is a part, is that which is seen from stations in Bengal, distant 165 and even 200 geographic miles, answering to 191 and 932 British miles. Now it requires an elevation exceeding 28,000 feet to be barely discernible in the mean state of the atmosphere at so great a distance as that last mentioned; though a much less elevation, it must be acknowledged, may suffice under circuinstances of extraordinary refraction.

The presumption, which was however raised on these grounds, was to my apprehension corroborated by observations, which I had myself the opportunity of making twenty years ago; and which gave, according to the note I have preserved of them, $1^{\circ} 1^{\prime}$ for the usual altitude of a conspicuous peak of the Himalaya viewed from a station in Bengal, which, according to the construction of Rennel's map, was not less distant than 150 English, or about 130 geographic, miles. If this distance might be relied on, the height to be inferred from that observation of altitude, after a due allowance for terrestrial refraction, would considerably exceed that of Chimborazo, being not less than 26,000 feet above the level of the plains of North Bengal. But, as the distance was not ascertained with sufficient accuracy for the purpose of confidently grounding on it a calculation of this nicety, I proposed to determine it by observations of the bearings of the same peak, from two places distant enough to afford an adequate base, the length of which might be found by correct survey. Not having had the means of completing the inquiry upon the principle here explained, I recommended it to the attention of the late LieutenantColonel Colebrooiex, by whom it was prosecuted during his survey of Rohilkhand; and it has been further pursued to a satisfactory result by his assistant, Lieutenant

Webb, during his journey towards the sources of the Ganges, and findly during a survey of the province of Görakhpír.

Colonel Colebronex's notice was also drawn to the subject by the communications of Dr. Francis Bucbanan and Lieutenant-Colonel Crafrord, who both visited Nepal in 1802, and who were convinced by the information they received there, from intelligent persons, that the sources of the Ganges are on the southern face of the Himalaya, and that these mountains are of vast height. He had likewise a knowledge of a survey by Lieutenant-Colonel Crawford, executed in 1805, along the northern frontier from Behar to R6hilkhand, in which bearings were taken of every remarkable peak of the snowy range, which could be seen from more than one station; and consequently the distance of those peaks from the places of observation, and thair geographical positions relatively to the plains of Hixdustdin, were determined by the intersection of the bearings and by calculation. Colonel Crawford had also taken altitudes, from which the height of the mountrins might be computed, and which gave, after due allowance for refraction, the elevation of conspicuous peaks, at least equal to that above mentioned. But the drawings and journal of this survey have been unfortunately lost.

The observations instituted and completed by Lieute-nant-Colonel Colybrooxe, while in Róhilkhand, were two ; one taken at Pilibhit, where the elevation of a peak distant 114 English miles, according to bearings from two stations, the distance between which was measured, was found to be $1^{\circ} 87^{\prime}$; the other at Jet' $\mathrm{hp} \mathrm{\prime}{ }^{\prime} \mathrm{r}$, where the elevation of the same peak, distant 90 English miles, was observed to be $2^{\circ} 8^{\prime}$. I find amonghis papers numerous other observations of the bearings and appearance of the chain of snowy mountains, as seen frcm
many successive stations. But the only altitudes which have been preserved are those above mentioned.

In calculating from these observations of altitude, allowance was first made for refraction at the same rate as for celestial objects of the same apparent altitude : and, from the observed elevation so corrected, was deduced a height of 20,019 feet for the mountain as viewed from Pilibhit, and 20,598 for the same as seen from Jet' hpir , or20,308 $\frac{1}{\frac{1}{3}}$ feet on a medium of both observations. But the allowance for refraction being much too great, amounting to $\frac{8}{8}$ ths of the contained arc in one instance and $\frac{3}{15}$ ths in the other, the computation was again made, allowing $\frac{1}{\frac{1}{8} \text { th }}$ of the intercepted arc for terrestial refraction, and the result showed a height approaching to 22,000 feet above the level of the plains of Rbhilkhand.

However, this allowance of an eighth part of the contained arc still exceeds the mean of terrestrial refraction, as appears from the trials.conducted by General Roy, and Colonels Wililams and Mudge*, and especially from those of the last-mentioned observer. They found terrestrial refraction subject to great variation, amounting to no less than $\frac{1}{8} \mathrm{~d}$ of the contained arc in some instances, and so small as $\frac{1}{55}$ th of the intercepted arc, and even less, or absolutely 0 , in others. But, in the numerous observations of those gentlemen, the extreme instances are few; and the range of variableness is commonly within narrower limits, from $\frac{1}{7}$ th to $\frac{1}{18}$ th, being on a mean either $\frac{1}{112}$ th or $\frac{1}{18}$ th part. The trials most to be depended on, being those which were conducted by means of correspondent and contemporary observations, give a mean of $\frac{1}{12}$ th. It appears, also, that the refraction is least variable where the ray passes through the air at a considerable distance from the surface of the earth, for the greatest part of its course: which is eminently the

[^3]

PL.II.

case in the instance under consideration; and especially in some which will be subsequently noticed, where the alitude of the mountains was taken from elevated spots : and, in all, the ray must pass for a great part of its course through a stratum of the atmosphere of much less density than in the experiments of General Roy and Colonel Mudge, to which reference has been made.

It follows, from these considerations, that the mean terrestrial refraction should not be taken at more than th of the arc contained between the object and station. This allowance agrees with that which Delambre directs to be made: it exceeds what was found by Legendre, (viz. $\frac{1}{1}$ th); and it approaches very near to Maskelfne's estimate of $\frac{1}{10}$ th. But from Major Lambton's observations, in the peninsula of India, terrestrial refraction was found to vary from $\frac{1}{4}$ th to $\frac{1}{1} \frac{1}{8}$ th*, or on a medium $\frac{1}{8}$ th of the contained arc. As this mean refraction may be thought more applicable to the north of India than that deduced from the trials made in the climate of Great Britain, I shall compute from altitudes reduced by this as well as the preceding correction for refraction, and contrast the results with similar calculations, in which the refraction shall be taken at the utmost quantity which any past experience could justify, viz. $\frac{1}{3} \mathrm{~d}$ of the arc.

To compute from the data, we have, in an oblique plane triangle, the angle (B) at the base of the mountain, which exceeds a right angle by half the contained arc ; or (which is the same thing) by half the angle at the earth's centre subtended by that arc ; the angle (\mathbf{S}) at the station of observation, which is the sum of the observed altitude (corrected for refraction) and half the contained arc ; and one side (A), which is the chord of the contained arc, or distance between the

[^4]base of the mountain and station of observation, differing but a few feet, in the cases before us, from the circular arc itself. The angles and one side of the triangle being thus known, the other two sides may be found; one of which, subtending the angle S, is the height of the mountain, or perpendicular from its summit to the middle of its base. The observations at Pilibhit and Jet'hpir, calculated upon this principle, and with an allowance of $\frac{1}{11}$ th for refraction, give 29436 and 22146 for the elevation of the peak observed from those stations; or on a mean 22291 feet above the level of the plains of Rohilkhand; or about 22800 feet above the level of the sea.

In the same manner may be calculated the height of the peak, situated, according to the information of the mountaineers, near the source of the Jamund, and measured from the summit of Naguinn-ghdti, near Lalkert, under an angle of $3^{\circ} 17^{\prime}$, and, from that of Chandrabadani, under one of $9^{\circ} 50^{\prime}$. The position of the mountain, deduced from horizontal angles taken at both stations, is settled by Mr. Webr in lat. $31^{\circ} 23^{\prime}$, long. $78^{\circ} 31^{\prime \prime}$. The latitude of the stations, determined by astronomical observations made at the next places of encampment \dagger, is $30^{\circ} 32^{\prime}$ and $30^{\circ} 20^{\prime}$; and the distanices, taking the longitudes as inferred from survey, are 54.9 and $63^{\prime} .2$ geographic miles respectively. Whence, atlowing $\frac{1}{1.1}$ th for refraction, we have 20895 and 21855 feet ; or, with an allowance of $\frac{1}{6}, 20505$ and 21320 feet; for the elevation of the mountain above those stations. Their respective heights are yet unascertained : but Chandra-badand was, by Mr. Webs, thought the highest, contrary however to what the result of the present calculation indicates. The height of Ndgien-ghatk was estimated by him at 5000 feet; and this guess is

[^5]corroborated by a trigonometrical measurement of a mountain called the Khanjar near Bhuwan-devet*, seen the preceding day, and found to be 3297 feet above the valley. It is distantly supported by barometrical measures of mountains in a different part of the same chain, as will be noticed further on.

The elevation of the Jamunavatari appears then to be not less than 25000 feet above the valley. It is however right to observe, that this measurement of the height of that mountain above the summit of the passes from which the angles were observed is not entirely to be relied on; as the distances are not determined with sufficient precision, being dependent on the relative position of the stations in longitude, concluded from a survey performed by means of a route measured by time in a very uneven country.

It might be expected that use should be made of numerous other observations, which were taken from various elevated situations among the lower mountains, especially those which exhibited much larger angles; on the presumable ground, that the height of any selected point among the numberless snowy peaks of the Himálaya would be best ascertained by angles taken at the nearest positions approaching it. No doubt such would be the case, could a survey be leisurely performed in the mountains, choosing the fittest stations upon a previous view of the country, and satisfactorily identifying the point to be observed. But a hasty journey (more was not in this instance practicable) among mountains nearer to the object affords less means of an accurate measurement than a survey carefully conducted at a remoter distance in the champaign conntry. Instead of keeping in view, from day to day, during the progress of survey, the same se-

[^6]lected point, and being fully assured of its identity by the uniformity, or at least the very gradual alteration of its appearance, the traveller through the mountainous skirts of the Indian Alps loses sight of those objects for successive days as he proceeds along the valleys, and finds it impracticable, when he emerges to higher ground, his route leading thim over some mountain, to discern from its summit the loftiest peak, now perhaps intercepted from his view by one nearer, though of less elevation; or to discriminate and recognise among innumerable glaciers, which have varied their aspect with his change of place, the particular snowy peak before contemplated by hin from another side, in a different point of view, and with another aspect.

On these considerations, and after carefully inspecting Mr. Webs's journal, in which I find observations of unnamed snowy peaks seen from the stations of Ret'hal* and Bahmencót'hi \dagger under angles of nine and ten degrees; with others, from more distant stations, of mountains supposed to be known, as the peak near Gangávatarí seen from Nágún-ghaté and Chandra-badaní \ddagger, and Cédár-nát'h from the last mentioned station §; I do not deem any of these points to be so verified as to be made the certain grounds of a correct measurement of altitude. The horizontal distance of the near glaciers appeared to the travellers, in more than one instance, to be only ten miles $\|$; but this, being a mere guess, cannot serve for the basis of correct calculation. Employed as a conjectural measure, it gives 9000 feet for the height of the objects above the lofty spot whence they were viewed.

[^7]The position of C ddar-ndt'h is not confidently stated *, the materials for determining it being insufficient. Supposing however that of Gangtvatdrí to be more nearly correct, the pyramidical peak in the vicinity of that celebrated place, if indeed the same which was seen and measured from Naguin-ghadti, is 17784 feet above the summit of that pass, esteemed to be 5000 feet high.

But, leaving these conjectures and doubts, let us pass to more certain observations and more exact measurements. To Colonel Crawford I am indebted for the communication of observations made by him at Cat'hmándu. Another set, much more numerous, was taken by him during an extensive survey along the frontier, but it is not at present within his reach. If not actually lost, as was believed when a preceding paragraph of this essay was written, the journal of his observations is probably in England, and, when there found, will confirm what is here stated upon other grounds.

At present what we possess of that laborious survey is the protraction of it, showing the positions of the mountains as they were determined by cross bearings taken from a great number of stations between Púrnea in Bengal, and Balrampir in Ayudh. This document, bowever, is invaluable for the purpose of the present inquiry.

Colonel Crawford, during a long sojourn at Cat'hmándú in 1802, took the angles of several selected points, of which he determined the distances by trigonometrical measurement, having taken the bearings from various stations in the valley of Nepal, the relative situations of which were ascertained by a trigonometrical survey proceeding from a base of $852 \frac{3}{4}$ feet, carefully measured four times, and verified by another base of 1582 feet,
measured twice. The positions of the same mountains were also settled by observations of them made from the plains of Behar in the progress of the great survey which has been mentioned.

The angles of elevation of the mountains above the stations of Sambhic and the queen's garden near Cat'hmandu were taken with an astronomical sextant and an artificial horizon, Among the most remarkable is an observation of a mountain pointed out as mount Dhaibun. It was seen under an angle of $5^{\circ} 4^{\prime} \& 1^{\prime \prime}$, and ascertained to be distant $35 \frac{5}{7} \mathrm{~g} . \mathrm{m}$. The elevation calculated from this measure is 20140 feet above the station from which the al titude was taken, and which is itself more than 4500 feet above the level of the sea, as concluded from barometrical observations to be subsequently mentioned. Another seen under a similar angle, $5^{\circ} 3^{\prime} 58^{\prime \prime}$, but less distant by four miles, exceeds the elevation of the station by 17819 feet. Both these mountains are but little to the eastward of north from Cat'hmandu. The following are as little north of east; viz. one nearly in the position of the Cála-bhairava*, distant $59 \mathrm{~g} . \mathrm{m}$. , with at altitude of $2^{\circ} 48^{\prime} 6^{\prime \prime}$, and consequently 20025 feet high; another in its vicinity, with an angle of $3^{\circ} \mathbf{2 5}$ $6^{\prime \prime}$, distant $48 \mathrm{~g} . \mathrm{m}$. and elevated 18459 feet; and a third, as much more remote, being $68 \mathrm{~g} . \mathrm{m}$. with an altitude of $2^{\circ} 7^{\prime} 21^{\prime \prime}$, and a consequent elevation of 18662 feet above Cat'hmándu.

All those mountains are perceivable from Patna: the first or the supposed Dhaibinn, at a distance of $16 \% \mathrm{~g} . \mathrm{m}_{\text {a, }}$ and Cala-bhairava, or the mountains in its vicinity, at that of 153,150 , and $145 \mathrm{~g} . \mathrm{m}$. These are the noirest of the Himálaya which are visible from that city. The most remote are seen in the N. E. quarter, at the prodi-

[^8]gious distance of 195 g . m., ascertained by their position, which is determined by bearings taken by Colonel Crawrord from stations approaching within a hundred miles of their site.

Mount Dhaibún, or at least the peak which was indicated to Colonel Crawrord under that name, and which is not surpassed by any of the points measured from Cat'hmandu, was viewed by General Kiripatrice, if indeed it be the same mountain, from a position ten miles nearer to it on mount Bhirbandi*, and his animated description of the sublime prospect contains presumptive evidence that the remoter glaciers of the Himalaya are still more elevated; for he speaks of a neighbouring mountain not less stupendous, yet surpassed by one of the pyramidical peaks of the snowy chain seen peeping over its towering summit. It may readily be credited that the more accessible mountains which approach Cat hmandu, as Jibibia, Dhaibín, and Dhanchá, may be inferior in height to the abrupter peaks in the chain of the Himalaya.

Among the loftiest in that chain is one distinguished by the name of Dhawala-giri, or the white mountain, situated, as is understood \dagger, near the source of the Gandhac river, called in its early course Sálagrami, from the schistous stones, containing remains or traces of ammonites, found there in the bed of the river, and thence carried to all parts of India, where they are worshipped under the name of Salagrama; the spiral retreats of

[^9]antediluvian molluscas being taken by the superstitious Hindu for visible traces of Vishnu.

A high peak, among the most conspicuous of those which are seen from the plains of Górakhpir, and on that account selected by Mr. Webre for a measurement, conducted by means of observations taken at different stations in that province, was pointed out to him as recognised by the mountaineers to be Dholagir (Dhawalagiri). Mr. Webs took the bearings from four stations, and altitudes from three; and the particulars of his observations are as follow :-

At station A, situated near Khatúr, bearing of the snowy peak P, corrected for magnetic variation and error of adjustment by an azimuth observed at the time N. $30^{\circ} 12^{\prime}$ E.

Altitude. $22^{\circ} 48^{\prime}$
At station B, Nowá newáda on the Rapti. Bearing of P.......... N. $49^{\circ} 30^{\prime}$ E.
At station C, two furlongs W. of Séugaon. Bearing of P........... N. $35^{\circ} 49^{\prime}$ E.
Altitude. $\quad 2^{\circ} 19^{\prime}$
At station D, two furlongs W. of
Bhopetpur. Bearing of P,........ N. $60^{\circ} 1^{\prime}$ E.
Altitude........................ $\quad 1^{\circ} 22^{\prime}$
B bears from \mathbf{A} by the survey,
W. $2^{\circ} 5^{\prime}$ N. distant,

43,4 B. M.
D bears from A, W. $7^{\circ} 5^{\prime}$ N..... 73,5 B. M.
The bearing of \mathbf{C} from A is not used, the side A C measuring only $16,3 \quad$ B. M.

C to B	W. $13^{\circ} 54^{\prime} \mathrm{N}$. distant	29,4 B. M.
C to D	W. 15° N. $\cdots \cdots$	60 B. M.
B to D	W. $14^{\circ} 3^{\circ} \mathrm{N}$.	30,5 B.

From these data Mr. Webr computes the distance of
the peak (P) from the stations A, C and D^{*}, at the numbers under mentioned: viz." From the station A, by the triangle A P B, 89,6, and by the triangle A P D 89,1; mean of both computations 89,35 miles, or 471768 feet. From the station D, by the last triangle, 135,9, and by C P D 136,8 ; mean of both, 136,35 miles, or 719928 feet. From C, by the last of these triangles, 103,4, and by C P B 102,3; mean of both 102,85 miles, or 543048 feet. He remarks that several other bearings of the same peak were taken from different stations; and that, by laying off the rhumb-lines of bearing on the map, they intersect at very inconsiderable distances from the position of the peak, as deduced from those which were selected for calculation.

Let us proceed to compute the height of Dhawalagiri (vulg. Dhólágir) with the foregoing measures of distance and the observed altitudes.

At the station A we have the distance 471768 feet, 77,85 geographic miles \dagger, or in parts of a circle $1^{\circ} 17^{\circ}$ $51^{\prime \prime}$; the chord of which in feet is 471758 . The altitude observed being $2^{\circ} 48^{\prime}$, and the refraction being taken at $\frac{1}{12}$ th of the intercepted arc, the angles are $\mathrm{S} 3^{\circ} 20^{\prime} 26^{\prime \prime}$ $15^{\prime \prime \prime}$ and $\mathrm{P} 86^{\circ} 0^{\prime} 38^{\prime \prime} 15^{\prime \prime \prime}$, with the side S B 471758; whence we have the side $B P$, or height of the mountain, 27558 feet.

[^10]By a similar calculation of the altitude of the same mountain observed from the stations C and D; viz. $2^{\circ} 19^{\prime}$ and $1^{\circ} 29^{\prime}$, or corrected for refraction $2^{\circ} 11^{\prime} 32^{\prime \prime}$ and $1^{\circ} 12^{\prime} 6^{\prime \prime}$, with the distances above found, which in parts of a circle are $1^{\circ} 29^{\prime} 36^{\prime \prime} 36^{\prime \prime \prime}$ and $1^{\circ} 58^{\prime} 48^{\prime \prime}$, and, reduced to the chords of the arcs in feet, 543031 and 719893 , the height comes out 27900 and 27573 ; or, on a mean of the three, 27677 feet above the plains of Gorak'hpu'r ; and reckoning these to be 400 feet above the mouth of the Ganges, as inferrible from the descent of the stream of rivers, the whole height is more than twenty-eight thousand feet above the level of the sea.

The following table exhibits a comparison of this result, with other computations made on different rates of refraction :-

It is apparent, from inspection, that the observations at the stations A and D agree best ;' and if that computation be nearest the truth, wherein the extreme differences are least, the conclusion will be, that the height is about 27550 feet; such being the elevation deduced from the mean of observations calculated according to middle refraction.

The limit of error arising from refraction must be taken at less thàn 850 feet, as the observations at A and C coincide for the height of 26690 feet, $\frac{1}{6}$ th of the contained arc being allowed for refraction; and those at C and D for an elevation of 28290 feet, $\frac{1}{18}$ th being allowed; while those at A and D do so for the mean altitude of 97565
feet, refraction being taken at the middle rate of $\frac{1}{1}$ th ; and a larger allowance than $\frac{1}{8}$ th of the intercepted arc, which would exceed mean celestial refraction for like altitudes, cannot be requisite, without very wide disagreement in observations made on different days, which would mark extraordinary refraction; but that is not the case with those in question.

The limits of error in respect of the observations themselves, whether for the distance or for the altitude, are more confined, since the uncertainty in the distance, amounting to a quarter of a mile in one instance, and half a mile in the rest, induces uncertainty in the computed elevation to no greater extent than 76 or 99 feet for the nearer stations, and 180 for the most remote. An error of a whole minute in an observation of altitude affects the consequent calculation of height in the proportion of about 200 feet for the more distant station, and 130 to 150 for the nearer. But the instrument which was used should, with due care, give angles true within that quanlity; and the observer was enjoined to take the angles to the mearest minute*.

It would be an extreme supposition that the errors have in every instance been the highest possible, and on the side of excess. Assuming, however, that they are so, the elevation, as observed from the two nearest stations, is not reduced below 26457 and 26467 , or, on the mean of both, 26462 above the plains of Gorak'hpur.

> We may safely then pronounce that the elevation of Dhawalagiri, the white mountain of the Indian Alps \dagger,

[^11]exceeds 26862 feet above the level of the sea; and this determination of its height, taken on the lowest computation of a geometrical measurement, is powerfully corroborated by the measure of an inferior, though yet very lofty mountain, observed from stations in Rohilkhand.

It may be satisfactory to bring this measurement to the test of comparison with the calculation of heights from like observations of small angles at great distances in a case where the elevation is otherwise known or more precisely determined. This we are enabled to do in the very instance most to be desired, that of Mont-blanc, heretofore considered to be the loftiest mountain of the old continent. Its altitude, as seen from Pregny, a station half a league from Geneva, near the lake, exhibits an angle of $3^{\circ} 14^{\prime}$, according to an observation by De Luc *. The distance is stated by him in round numbers, 227000 French feet; but appears from Sir G. Shuckburgh's series of triangles \dagger to be over-rated, the distance of Geneva, a little more remote, being no more than 225098 English feet. Calculating from this side, and the angle observed by $\mathrm{De}_{\mathrm{E}} \mathrm{Luc}$, with an allowance of $\frac{1}{1} \frac{1}{1}$ th of the arc for refraction, the height is found 13713 feet above Pregny, or 15122 feet above the level of the sea. De Luc himself computed it from the same observation, differently employed in a manner which is little affected by uncertainty in the refraction or the distance, though subject to other error, at 2391 French toises equal to 15289 English feet : and Sir George Shuckburgh, by a trigonometrical measurement, in which he uses from one station a side of a triangle 206879 feet, and from another one of 142362 feet, and corrects the observed angles by an allowance for refraction equal to $\frac{1}{10}$ th of the contained arc, makes the elevation of Mont-blanc 14411

[^12]and 14453, or, on a mean of the two, 14432 feet above the lake of Geneva, and 15662 above the sea.

These instances may authorize an inference, that, in similar measurements of Dhawalagiri, Dhaibuin, and other mountains of the Himalaya, from stations some as near, others twice or thrice as distant, the uncertainty respecting the accuracy of the result is not so much greater as to render that result vague and dubious.

Barometrical measurements, though less to be depended upon than a geometric one, would have been desirable, as showing that no very material error has by any oversight crept into it. In the absence of any observations of the barometer on the nearest accessible heights, weare in possession of some made on summits of mountains belonging to the intermediate chain. For instance, at Chisapani fort, on the route from North Bihár towards Cat hmándúu in Népál, the barometer was noted on two days at an interval of more than a month (23d February and 28th March 1793), and both observations gave the same length of the column of mercury 24.63. On one of those days the barometer was observed at a spot a little more elevated, near the cold spring which gives name to the place*, 24.43: and the temperature shown by the thermometer is also given, 65° Fahrenheit's scale at 90^{\prime} clock, and 67° at 11 in the forenoont. A meteorological journal was kept by Dr. F. Buchanan at Cat'hmándú, for nearly ten months (April 1802 to February $1803 \ddagger$), and the mean height of the barometer in that period is 25.22 . The greatest height being (in May) $\mathbf{2 5 . 6 2}$; and the least (in August) 24.83 §. On a

[^13]minute inspection of it, the changes, though observations were made at four different hours of each day, are small, seldom amounting to the tenth of an inch within the day, and by no means corresponding to the changes of temperature shown by the thermometer.

To compute the elevation of the stations at Chisapant and Cat'hmandúu, under the want of corresponding observations of the thermometer and barometer at the foot of the mountains, we must either seek in some journal, which may have been preserved, a contemporary observation at a station (a very distant one) in Bengal, or else be content to take the mean height of the barometer in Bengal, where it is very stationary, and seemingly unaffected by changes of temperature.

For here, as in most countries near the tropicks, the barometer has a very confined range, and does not vary with the fluctuations of the temperature, owing to contrary but equal variations of density and elasticity of the air, or other countervailing causes not investigated. The column of mercury stands within a few tenthe of an inch of the same height at all seasons of the year *; and exhibits, but within narrower limits, the phænomenon of diurnal tides, which also do not correspond with the rise and fall of the thermometer \dagger. Towards the end of February, the season when the mountains of Népal were visited by General Kirkpatrick, the barometer does not vary in Bengal so much as the tenth of an inch above and below 30 inches, while the themnometer in the shade ranges 10°, (from 70° to 80° on a medium,) and mach more in an

[^14]open exposure, between morning and noon. In the months of December and January, the season when the column of mercury isat its maximum*, the mean elevation of the barometer is 30.07 , while that of the thermometer is 68°. At Cat'hmandú, during the same season of the year, the mean height of the barometer is 25.28 , while the thermometer is 52° : seldon altering so much as the tenth of an inch, and never more than $1 \frac{1}{2}$ tenths, in the compass of one day, nor during the whole season so much as two tenths for the same hour of the day.

The last of the two methods proposed seems therefore preferable, as the baroneter is shown by the journal kept at Cat'hmándú to be as little variable in Népál as it is in the plains of India; and contemporary observations at places very remote (no other could be found) would produce no greater degree of accuracy, since a like state of the atmosphere in respect of elasticity, or in regard to humidity and other circumstances affecting its density exclusive of temperature, is hardly to be presumed to prevail through an expanse of many hundred miles between places so differently situated; the one on the open plain within the reach of influence of the sea, the other in the midst of mountains at the foot of the loftiest Alps. I shall therefore take the mean height of the barometer in Bengal, towards the end of February, or 30 inches, and the observed height at the spring of Chisapani at the same season of the year 24.43: and in like manner the mean length of the column of mercury for both Calcutta and Cat'hmándú, in the winter season, when the mean temperature at the ope place as much exceeds the zero of the scale adapted to the measurements of heights, as it is short of it at the other. This appears to be 68° at Calcutta and 52° at Cat'hmándú : the inean

[^15]of both, or 60°, differing by less than 11° from the zero of the scale. The corresponding lengths of the column of mercury are 30.07 and 25.23 respectively.

Proceeding on these grounds to calculate the heights of the places, we find from the difference of logarithms*, $753 \frac{1}{2}$ French toises or 803 English fathoms in one instance, and 892 French toises or $950 \frac{3}{4}$ English fathoms on the other : needing little correction for the difference of temperature, the thernometer being near the zera of the scale \dagger. The elevation thus found, corrected, however \ddagger, for expansion of mercury and variation of the density of the air, as indicated by the thermometer, is 5818 English feet or $969 \frac{8}{4}$ fathoms for Chisápani, and 4784 feet or $797 \frac{1}{3}$ fathoms for Cat'hmándú§, above the plains of Bengal. Hence may be inferred the following approximated measures of other stations where barometrical observations were also made, unaccompanied, however, by observations of the thermometer.

[^16]Feet.
Chandragiri, M $7989 \dagger$
Tambekhán, M 6488
Chisápání. M 6453
Cumhara, M 5943 \dagger
Bhirbandi, M 5875
Sibudhol valley (24.489) 5711
Also, as before,
Cold spring Chisápíní. 5818
City of Cat'hmándíu. 4784
And (by a trigonometrical measurement ofmountains encompassing the valley of Népál"*,selecting from it mountains south of Cat'hmán-dí) Chandragiri M. above Cat'hmándú 3682feet, and above the seat \dagger. 8466
Palchu M. (above Cat 'hmandú 4210 feet,). . 8994

It does not seem, then, that the elevation of the pass of Nagun-ghatí, whence the mountain near Jamundiwatári was observed, need be thought overrated at so little as the lowest of these heights, which command a similar extensive view of the Himálaya.

To recapitulate the result of this minute examination of measurements of the Indian Alps, the following are stated as differences of elevation which may be received as near approaches to a correct determination of the

[^17]height, and as fully substantiating the position which was advanced at the beginning of this paper.

Dhawalagiri or Dhblágir; above Gorakhpur, which is estimated to be 400 feet above the sea;

On a mean of two nearest observations, and at the lowest computation English feet 26462

On a mean of three observations with middle refraction 27677
Above the sea, at the lowest computation. . . . 26862
Yamunávatárí, or Jamautrí ; above the summit of Náguinghati, which is estimated to be 5000 feet higher than the sea

20895
Above the sea . 25500
A mountain supposed to be Dhaibun; above Cat'hmandú, which appears by a barometrical measurement to be at least 4600 feet higher than the sea 20140
Above the sea . 94740
A mountain not named, observed from Pilibhit and Jet'hpiur ; above Rohilkhand, which is estimated at 500 feet above the sea:

On a mean of observations at both stations, 22991, or, more exactly

22268
Above the sea . 29768
A mountain not named, observed from Cat'hmandú, and situated in the direction of Calabhairavi; above the valley of Népal, 4600 feet higher than the sea 20025
Above the sea . 24685
Another near it; above the valley of Népal. . 18669
Above the sea . 23262
A third in its vicinity; above the valley of Népál 18452
Above the sea . 23052
I take this opportunity of adding to the former communication of Captain Raper's account of the journey
to Bhadrinath and to Rétal, and Bett'hári on the route towards Gangáwatari, the narrative of the prosecution of the journey towards the source of the Bhágirat'hi by the Milinshi, who was sent from the last-mentioned station to explore that source, and who actually penetrated several miles beyond Gangawatari. It is taken from the field-book which was kept by him, and of which the original has been delivered to me by Lieutenant Wевв. The route is laid down from this journal in Lieutenant Webb's map of a survey of the Ganges within the mountains, inserted in the last volume of the Asiatich Researches*.

It will be observed that the Münshi crossed the Ganges several times on Sangas, or bridges consisting of one or two fir-trees laid across from bank to bank. The breadth of the river, or, which is the same thing, the length of the bridge, was, in the first such instance which occurred, 56 paces. At the second bridge the breadth of the river crossed was 46 paces; half of which consisted of rocks in the middle of the river, and the other half only appears to have been the breadth of the stream. In the third instance the distance from bank to bank was 51 paces; but one-third of this was rock, leaving two-thirds only, or 35 paces, for the width of the stream. The fourth bridge was 45 paces long; but the fifth 28 only : and the sixth appears to have been no more than 25 paces. This was below the confluence of the Bhagirat'hi with a rival stream named Kedargangá, and considerably short of the termination of the Munshi's journey. He has not specified the breadth of the river where last seen by him : but, at Gangáwatari, an expansion of the stream is described by him to be 40 cubits wide and two deep, with scarcely any current. The river was traced 3 miles further amidst the snow.

[^18]Sunday, 1 st May, 1808, set off from Bet hari, Pergh Taknúr in Garhwál.

Left hand.
Road level. Ganges distant 200 paces. Name of the place Bet'láríiban.

Mauza Kiárkhé in sight ; distant $\frac{1}{2}$ coss. A small stream from the mountain flows towards the Ganges. The river 100 paces distant. Road over rocks; difficult.

Road level over rocks. Ganges very near.

Ascent. Ganges 400 or 500 paces distant.

Descent. Ganges 250 paces off.

Over rocks near the river ; extremely difficult.

A small stream from the mountain falls into the Ganges.

A grotto resembling a veranda, near the road.

Torrents, fifty or sixty paces wide, running with great violence towards the river, 200 paces off.

A grotto capable of 135 containing ten or fifteen persons; river as before.

Ascent.
Level road on the high ground. Ganges 400 paces distant. A village in sight, 4 coss off.

Ascent. Ganges 540
coss off.
Level. River as be- 200
fore.
(
loBearings by
Compase.Paces. Right hand. 622 Across the Ganges, the river Idrar in sight; distant $\frac{1}{3}$ coss. Name of the place Sálkában.
320

800 R. Jamca; distant coss.
150
128
192

11

56

8571281921156857

Left hand.	Bearings by Compass.	Paces.	Right hand.	
Over rocks; very dif-		320		
ficult.				
A grotto capable of		240°		
containing 25 persons.				
. Road level. River		408		
still as before.				
Descent: to the bank		309		
of R. Soar.				
Cross R. Soar, by a		14		
Sanga.				
The water touched				
the bridge and flowed				
with rapidity. Ganges				
$\frac{1}{5}$ coss distant. Ma.			-	
Murar in sight on an				
Ascent.		32		
Road along the side		1208	A large village, $\boldsymbol{S a}$	
of the mountain.			lang, and river of the same name; distant $\frac{1}{2}$ coss.	
Descent**		320		
Road along the side		174		
of the mountain.				
Descent to the bank		560		
of the Cúchián N.				
Ford of the Cuchian		5		
N.t.				
Ascent of mount	N. 3 points E.	. 848		
K'hontá \ddagger.				
Road descends.		704		
Ascends again.		128		
Descends.		205		
Ford of the Taur N§.		2		
Road along the side of		997		
the mountain \\|. .				
Level.	N. 2 points E.	. 59		

[^19]| Left hand. | Bearinga by Compass. | Paces. | Right haad. |
| :---: | :---: | :---: | :---: |
| Ascent of mount Tu- | 2264 | | |
| wárá ${ }^{\text {* }}$. | | | |
| Descent. | N. 4 points E. | 176 | |
| Ascent. A large grot- | | 168 | |
| to seen. | | | |
| Descent along the side | : | 1392 | |
| of the mountain to the | | | |
| banks of the Tiar R. | | | |
| Ganges $\frac{1}{2}$ coss off. | | | |
| Ford the Tiart. | N. 5 points E. | 18 | |
| Road level; a little | | 1283 | |
| undulating \ddagger. | | | |
| | Total | 16865 | |

Monday, 2d May, proceeded.

Road leads over rocks N. 3 points E. 283 River Datai in sight, of the Ganges. Stream distant 500 paces.

Ascent of Mount $\mathbf{C a}$ par Khola. Ganges 1 a coss distant. It comes from mount Kaild́s. N. 6 points E.
1248 Flows with great rapidity. coss distant.

Road level. A small N. 1 point E. 464
grotto. Ganges \ddagger coss distant.

Road undulating to 496 the banks of the Khótmári. Ganges coss distant.

Ford the stream §. . 3
Ascent. N. 2 points E. 112
Road level on the 208 high ground.

Along the side of the 960 mountain. Ganges $\frac{1}{8}$ to $\frac{7}{4}$ coss distant.

[^20]| Ieft land. \quadBearings by
 Compass. | Paces.' | Bight hand. |
| :---: | :---: | :---: |
| Crossed the Réri*; | 8 | |
| Descent along the side | 1836 | |
| of the mountain. Ganges 1 coss distant. | | |
| Ascent. Ganges 400 N. 6 points E. | 355 | |
| paces off. | | |
| Along the side of the | 1280 | |
| mountain \dagger.
 Road level. Ganges N. 2 points W. | . 1486 | R. Nar 1 coss dis- |
| 200 paces distant. | | tant. Comes from N. 2 points E. A cataract 7 cubits high. |
| Road level. N. 3 points E. | 193 | |
| Road level. A grotto | 200 | |
| reen. Ganges 500 paces | | |
| off. | | |
| Road level. | 888 | R. Runkd 1 coss dis- |
| | | tant, N. 7 points E. A |
| | | hot spring from the side |
| | | of the mountain called |
| | | Rarsicund, on the bank of the Ganges. |
| Road level \ddagger. | 42 | |
| Road level to the | 349 | |
| banks of the Calydni. | | |
| Cross the rivulet. | 2 | |
| Ganges coss distant. | 214 | |
| héľ. Some fields of cul- | - 214 | the Ganges. It flows |
| tivation. Ganges 600- | | from N. 7 points E. |

Ascent along the side N. 5 points E. 1110 of the mountain. Ganges $\{$ coss distant.

Descent by a similar 1154
path. Ganges 200 paces
off.

[^21]

* A deserted hut of herdsmen. Ganges 300 paces off.
\dagger The stream was 30 cubits below the bridge. The Sángd consisted of two or three spars, with a few pieces of wood tied on them. It was not a safe bridge. Having crossed, have now the Ganges on the left hand.
\ddagger A fir-tree, which had fallen in, rested against the bank.
f A grotto seen : might hold 50 people.
|l \mathbf{A} torrent from the mountain passes close to the road.
II Stopped for the night at a large grotto, capable of containing 40 persons, 200 paces from the Ganges. Slight rain all night.

Left lamed.	Bearing by Compass.	Paces:	Right land:
		3	Forded the Déo
	N. 5 points E.	378	Road to Déoráni ghát
	N. 5 pint	46	of the Ganges. Crossed the Ganges by a Sángá, or bridge of spars*。
Ascent.	N. 2 points W.	40	
Level road.		400	
Descent.		40	
Level.		688	
Over the snow.		182	
Road level.	N. 2 points E.	48	
Ascent.		40	
Level. A small grotto		120	
seen.			
Crossed the Ganges at		51	
the Ghát Lókarinag by a Sángá, or bridge of		358	Road almost level, over rocks.
sparst.		59	Road level.
	N. 4 points E.	1095	Road level along the mountain's side. Gan-
			ges 100 paces off.
,		19	Crossed the Lôtgárh by a Sángd, consisting of 4 timbers \ddagger.
		480	Over rocks on the edge of the Ganges.
		296	Over snow which had fallen on the bank of the
			Ganges.
	N. 7 points E.	184	Proceeded over rocks in the Ganges.

[^22]Left hame.

The Jeldrt R. in sight, one coss distant, comes from N. 7 points E. and snowy mountains seen N. 7 points W. distant one coss.

[^23]Left hand. $\quad \begin{gathered}\text { Bearings hy } \\ \text { Compass. }\end{gathered}$ Paces. Right hand.
320 Level, along the bank

96 Ascent.
200 Descent.
653 Over rocks of the Ganges; extremely rough and difficult.
N. 4 points E. 11 Cross the Bhéld by a Sángá*.
135 Level.
N. 7 points E. 54 Cross the Ganges at the Ghdt of Sukh, by a Sdngad.
Ascent, along the side N. 7 points W. 659 of the mountain.

Along the side of the N. 7 points E. 1654
mountain to Sukhi.
Ganges one coss distant.

Along the side of the 840
mountain.
Ascent. 552
Descent. Ford the 1248
Choraki N.. .
Road level. Ford the 523
Pakchahárg.
Road level. Ford the 117
Gangatrí N. This flows from N. 7 points W. Ascent to Jhálá ; 184, which is 100 paces from the Ganges II.

[^24]
4th May.-Proceeded at noon, when the snow was a .little cleared away.

Left liand.

Bearings by

Compass. Paces.

Right hand.

Road level.
N. 2 points W. 496

Ford the Nibdni N. 11
It comes froin $S .7$ points
E. Ganges 200 paces
off.
Along the side of the N. 7 points W. 640 mountain.

Descent. Ganges 2699
to 300 pacès off.
Road level. N. 5 points E. 400
Cross the Shinan by.a 32
Sángá*.
Road level. 40
In the shallow bed of • 70
the Ganges.
Over stones in the 37
Ganges.
In the shallow water 59
of the river.
Over stones. 35
In the shallow water. 11
Over stones along the 562
edge of the river.
In the shallow watert. 48
Along the banks of N. 2 points E. 336
the Ganges \ddagger.
Ascent. 48
Along the side of the 528
mountain.
Over the rocks of the 1000
Ganges, very rough and
difficult.
Cross the Gongtí by 22
a Sángá §.
Road level. Ganges N. 7 points E. 531
250 paces off.

- The stream comes from N. 2 points W.
+ Two channels of the river here unite.
\ddagger The melted snows descending from the mountains.
\oint The water touched the bridge. Stream comes from N. 5 points E.

Total 9002

5th May.-Proceeded from Dherali.

S. 5 points E. 160 Ascent.

[^25]Left hand. $\begin{gathered}\text { Bearings by } \\ \text { Compase. Paces. Right hand. }\end{gathered}$
400 Descent. Ganges 200 paces off
416 Level road. A stream from the mountain crosses the road.
792 Over rocks on the edge of the river.
14 Crossed the Gangesárti by a Sángá .
S. 5 points E. 1000 A stream from the mountain crosses the road. Ganges 250 paces distant.
320 Road level : but over rocks.
96 Level : over snow.
864 Level: over rocks. Ganges 300 paces distant.
160 Level : over snow.
480 Level : over rocks. Ganges 200 paces distant.
80 Level : over snow.
400 Level : Ganges 200 paces distant.
N. 5 points E. 480 Ascent.

320 Level : Ganges 400 paces distant.
R. Gúmgư in sight, one coss distant \dagger.

Descent: Ganges 300 paces distant.
80 Level: A torrent from the mountain S. 1 point E.

160 Level.
249 Over snow. A stream from Changthanga.

*The stream is very rapid, and comes from Mount Cailas, S. 3 points E .

+ Comes from N. 2 points. Is crossed by a Sangá on the road to Bkot (Thibet).

Left mand.
Bearings by Compass. Paces. Right hayd. N. 6 points E. 488 Level.

80 Over snow.
533 Level. A stream from Changla crosses the road.
445 Level. Ganges 4 or 500 paces distant.
1064 Along the side of the mountain.
14. Cross the Laconga by a Sdrga*.
240 Level.
240 Ascent of Mt. Rothnti.
312 Level : over rocks.
120 Ascent.
96 Level : over rocks.
64 Level : over snow.
160 Level. Ganges 300 paces off. Ascent.
560 Along the side of the mountain.
R.'Jthat-gangh from N. 5 points E. 1588 Level: over rocks. the Himdchal mountains. Comes from N. 6 points E. Flows with great rapidity; and joins the Ganges. A Sdrgd over it leads towards Bhts (Thibet).
A figure of Bhairblal.g

$$
168
$$

$$
144
$$184 Level : over rocks \dagger.512 Road undulating. De-scent by means of ashort ladder.

 Level. A streamfrem the mountain crosses the road.
 25 Cross the Ganges by a Sdnge at Bhairogdtit.

Total 15032

- It comes from Mount Cailds S. 5 points E. Ganges 200 paces off. \dagger Cdlbhairb: a mere heap of stones, with no idol. Walnut-trees. Ganges 500 paces off.
\ddagger The stream appeared to be 500 cubits below the bridge.
f Carved in the stony scarp of the mountain. Two idols of stone x_{x} danbed with minium. Pilgrims make offerings here, and proceed.
-Halted in a grotto which might contain 100 persons.

6th May.-Procreded on the journey.

Left hand. Bearings by 'Paces. Right hand.

Ascent by means of N. 7 poin:sE. 299 ladders.

Ascent of the moun- 400 tain^{*}.

Level : over rocks \dagger. 1080
Level : a plain. 80
Level : over rocks \ddagger. . 1035
Level §. . 336
Along the side of the N. 6 points E. 840 mountain.

Level||. . $\mathbf{4 0 0}$
Level. Over rocks. 2000 Ganges 400 paces off.

Level. Ourt rocksf. 752
Level. A stream from . 452
Terdíi crosses the roiad.
Level. Halted in the 576
grotto of Teráls. Firtrees. Ganges 400 paces distant.

Level. N. 7 points E. 40 A stream from the nnow on the other side of the river. Distant $\frac{1}{3}$ coss:
Level. Road crossed
411
by a stream from the mountain.
Level : over rocks ***
444
Level : over rocks \dagger t. 1392

* A temple of wood, containing an image of Bhairbldl.
+ A stream from Banlago crosses the road in three places; towinds the Ganges. Comes from S. 7 points W. Ganges' 500 paces off.
\ddagger A stream from Mount Matwdri crosses the road.
6 Halted in a grotto of Matwidri. - Ganger 400 paces. dident-
|| A stream near the deserted village of Himun, from the mountain, across the road.

II A stream near Bhandrd'(formerly a village), comes 'ftom the mountain across the road.
** Grotto of Otsaro, capable of conketining 20 pterstons. Gariges 300 paces off.
$\dagger \dagger$ Many torrents from the mountain oross the roid and fall fato the Ganges. River 250 paces distant.

- A foaming torrent crosses the road called Megmerd or Shircai. Falls into the Ganges.
t A grotto capable of holding 10 persons. Ganges 250 paces off.
\ddagger A torrent passes near the road. Falls into the Ganges. The river 200 paces distant.
© Patdgnit, where the Pandus are said to have performed a sacrifice. Ganges 200 paces off.
II A torrent falls into the Ganges. Pakora and Cachori: a spot surrounded with red marks, where the Pandus are said to have prepared their victuals. River 300 paces distant.
I A spot named from salt and oil, which might formerly be perceived, but not so now.
** Gauricund, a pool in which the water collects, and whence a stream proceeds. Confluence of Keddrgangd from S. 5 points E. with Bhdgirath or Ganges from N. 7 points E. Hindus shave and bathe here preparatory to visiting Gangdxwatr.
++ On the banks of the Ganges. A wooden temple, containing the footetep of Gangd on a black stone. Súryacund, Vishnucund, apd Brahmecund, within the Ganges, being names assigned to distinct portions of the river, where pilgrims bathe. The last is 40 cubits wide, and 2 deep. It is the pure Gangd, unpolluted by water of any other stream. Bhagirat hi-sild, a large rock in the river, on which the king Bhdgirat ha worshipped the deity. The river comes from N. 7 points E., and has very little current. Scarcely any trees but the Bhojpatr (birch i). On all sides snow. A large temple roofed with rood, containing an image of Gange in red stone, a small femaito. ©

7th May.-Proceeded onwards.

Left hand.	Bearings by Compass. Paces.	Right hand.
Road level : over N. 7 points E. 1320 rocks of the Ganges.		
Road level : the river	1416	
might now and then be perceived amidst the		
snow. Road level : on rocks	496	
in the Ganges*.	496	
The Ganges might	968	
now. and then be perceived under the snow \dagger.		
Along the bank of the	760	
Ganges : over rocks \ddagger		
bed of the Ganges ¢0.		
Over rocks along the	520	
banks of the Ganges,		
which here shewed it-		
selfll		

figure of silver, images of Mahddéca and Párbatt in red stone represented with the human form, Bhágirat'ha, Annapurnd dévi, Vishnus, Brahmá, and Ganés'a, in red stone. A Brd́hmen, who is an inhabitant of Dherdh', attends here during three months, Vaiskk'k; Jytt'h, and Asdrh. Scarcely any but Bairdgis and Sannydsis come here: the road being in the highest degree difficult, and the place amidst snow most inhospitable.
*The breadth still less than at Gangdwatri. On one side the road is practicable. On the other a perpendicular wall of rock. In the bed of the river saw a rock 2 or 3 paces wide and 5 long, bathed by the river on both sides, and overhanging the stream ; the depth of water being very small. This rock exhibits a similitude of the body and mouth of a cow. It is called Gao-múc'h.
\dagger An image of black stone might be seen in the snow; but could not be approached, for fear of being buried in the snow. The road was over the snow of the Ganges.
\ddagger A large cavern, quite capable of containing 100 persons : consists of several apartments.
\S The river was not once scen, nor was any sound of its curremt heard. The snow, being soiled, appeared like the earth of cultivated feelds.
U In front was a steep mountaip like a wall of rock, from an angle

8th May.

Set off to return by the same road towards Dheralf, there being no other practicable route.
The sequel of the field-book is kept in a similar manner ; but it is thought unnecessary to translate it.
of which the Ganges appeared to come. Beyond the present station was nothing but snow, nor any road but that termination of the valley. From dread, none would venture into the water of the Gauges. The snowy tops of the mountains appeared of various height; and not the least sign of vegetation : nothing but snow, masses of which were falling from the mountains. As the people in company were deterred from advancing, and there appeared no road by which to penetrate, and further progress seemed full of peril and of terror, I was under the necessity of returning to Gangarpatrt.

[^0]: - As Res. vol. xi, p. 445.

[^1]: * Rennex's Memoir of a Map, p. 302. (2d Edit.)
 $\dagger 1,904$ French toises.
 $\$ 3,220$ French toises.
 § Reuber Burrow.

[^2]: - Le-Col. Crawford.
 \dagger General Kiripatrick's Account of the Kingdom of Nepal.
 \ddagger Capt. Turner's Narrative, p: 203 (2d Edit.), Phil. Trans. vol. 79.
 f. Revzza Burbow.

[^3]: - Phil. Trans. vol. 80, 85, and 87.

[^4]: - Page 100 of this Volume.

[^5]: - Asiatick Researches, vol. 11, p. 442.
 \dagger MS. Journal.

[^6]: - It is to be regretted that more frequent opportunities did not occur for similar measurements.

[^7]: * $10^{\circ} 18^{\prime} .9^{\circ} 55^{\prime} .9^{\circ} 42^{\prime} .9^{\circ} 19.8^{\circ} 19^{\prime}$ bearing respectively N. $62^{\circ} 49^{\prime}$. E. N. $59^{\circ} 04^{\prime}$ E. N. $54^{\circ} 56^{\prime}$ E. N. $49^{\circ} 42^{\prime}$. N. $45^{\circ} 28^{\prime}$ E. and further diminishing as the bearings grew more Northerly.
 $+9^{\circ} 55^{\prime} .9^{\circ} 14^{\circ} .8^{\circ} 17^{\prime}$ bearing N. $43^{\circ} 35^{\prime}$ E. N. $39^{\circ} 12^{\prime}$ E. N. $28^{\circ} 17^{\prime}$ E. respectively.
 $\ddagger 301^{\prime}$ and $2^{\circ} 50^{\prime}$.
 $\int^{5} 2^{\circ} 34^{\prime}$.
 (1siatick Researches, 11, p. 515 and 552.

[^8]: - Genemal Kisxreatarex's. Account of Nepdlo

[^9]: - Account of Nepdl, p. 138. It is right to observe that the map annexed to that publication places Dhaiblun and other mountains, as Dhkncha and Ghirkhk, much nearer to Cat'hmdends than they are by Coloned Cbawrori's survey. The latter is however most to be depended on.
 † Kirepatrick: Nepdl. Sdlagrdma stones are found in great abundance near Muctindth, and more sparingly at Dum dher cund sill mearer to the sounce of the Griadmac. Colonel Ciawford's MS.

[^10]: - See the annexed map.
 \dagger The geographic mile, or sixtieth part of a degree of a great circle, is here taken at 6060 feet. The length of the meridional degree in different latitudes, according to the latest measurements, being 60995 fathoms in latitude $66^{\circ} 20^{\prime}, 60820$ in latitude $52^{\circ} 2^{\prime}, 60783$ in latitude $46^{\circ} 12^{\prime}$, and 60487 in latitude $11^{\circ} 6^{\prime}$; whence may be concluded 60600 nearly between the latitudes 27° and 31°; and this measure is employed without correction or modification, though the position of the arcs be at acute angles to the line of the meridian; greater precision in reducing the distances to parts of a great circle appearing to be unnecessary, as the utmost accuracy would make little difference in the computed height of a mountain.

[^11]: - Instructions, quoted in Asiatick Researches, vol. 11, p. 448. The writer of these was acquainted with the instrument, and knew the degree of precision which it comports.
 \dagger Sans. Dheroala, white; Giri, mountain. Vulg. Dhoulagir, the white mountain. Kirepatzicx's Nepal, p. 287. It is the Mont-blanc of the Himallaya.

[^12]: - Modifications de l'Atmosphere, § 763.
 \dagger Philosoph. Trans. vol. 67. The distance is not there stated, but is easily calculated from the angles and distances exhibited.

[^13]: - Népal; Chís cold, Pání water. Sans. S'is'ira-pániya.
 t Kirepatrice. Népál, p. 52 and 331.
 \ddagger MS.
 § The barometer, by which the journal was kept, gave less length to the column of mercury, than another, with which it was occasionally

[^14]: compared, and which was constantly higher by a quastar of an inch. The latter agrees more nearly with General Kirkpatrick's barometer, which in March exhibited 25,87 for the length of the column of mercury at Cat'hmandu. The measure of it must be therefore taken. as doubtful to one quarter of an inch.

 - Lrictick Researches, vol. 2, p. 471.
 + Dbid. val. 4, p. 202.

[^15]: * Asiatick Researches, vol. 2, r. 470.

[^16]: - De Luc, Mod. de l'Atmosphere, § 576 and 631.
 \dagger Zero of De Luc's scale, 16.75 of Reaumur's, an- $\}$ swering on Fahrenheit's scale to................

 Thermometer at Cat'hmándú 52
 At Calcutta... . 68
 Mean of both 60
 \ddagger According to the mean of the rules proposed by General Roy and Sif Grorge Shuckburgh; and nearly in conformity to De Loc's, excepting the reduction of 8° in his scale : the numbers being 0.454 for the multiplication of the difference of thermometers, and 0.00244 for that of the mean of both thermometers above 32° Farrenieit.
 § By another barometer which stood a quarter of an inch higher, the elevation of Cat'hmándúu above Calcutta is 4510 feet; or 4600 , nearly, above the sea.

[^17]: * Estimated, Kirkpatrick, Népal, p. 331 and 332.
 \dagger Doubtful.
 \ddagger Kirkpatrick, Népal, p. 70.
 $\$$ Ibid. p. 57.
 if Much bencath the summit of the mountain: ibid. p. 139 and 333.
 π Ibid p. 334.
 * Colonel Crawrord, MSS.

 HThis mountain, by General Kirkpatrick's doubtful observation of the barometer (22.5), is 7989 feet above the plains of Behyal.

[^18]: - Vol. 11, p. 447.

[^19]: - Ganges 500 paces off.
 \dagger Ganges $\underset{\text { a coss off. The village of Cuchián in sight on the height. }}{ }$
 \ddagger Name of the place Agrakkd. Ganges $\frac{1}{2}$ coss distant.
 § This stream comes from North 7 points West. Ganges still in coss distant. Rained at noon. We ate bread on the bank of the stream.
 || Lower down, a grotto capable of holding 25 persons.

[^20]: * Village of Tuwárá in sight. A small grotto. Ganges $\frac{1}{4}$ coss distant.
 \dagger The stream comes from N. 2 points E.
 \ddagger Ganges 500 or 600 paces distant. Stopped for the night in a large grotto or place sheltered by rocks. Rained the whole night.

 I It comes from N. 1 point W. Falls in a cataract of 20 cubits high.

[^21]: - It comes from S. 7 points E. Ganges less than 1 coss distant. Halted at noon to eat bread. It rained.
 †The Réŕf falls into the Ganges. This is 50 paces [wide].
 \ddagger A small stream from the mountain's side falls into the Ganges.

[^22]: * It consisted of three small spars, and was $\frac{1}{2}$ a pace wide ; very dangerous and terrifying. Went over it in a sitting posture, sliding along. The wooden part 24 paces, of which 11 very dangerous, and 13 more easy. The rest (22 paces) on rocks in the Ganges. The stream 7 cubits below the bridge.
 \dagger Two paces wide, and five cubits above the stream. Wood 25 cubits. Rock 21 cubits. Wood 10. Rocks 5. Ganges again on the left hand.
 \ddagger It was 2 paces wide, and was touched by the water, which flowed with great rapidity. This stream comes from Himachal N. 7 points E.

[^23]: * A cave or grottó seen, and a small one capable of containing 50 persons.

[^24]: *Five cubits above the water. The stream comes from S. 1 pt. E. †One pace wide, five cubits above the water. The old one had been broken down, and a new one had been recently erected. The greatest part of the distance in crossing was over rocks, vis. Rock 26. Wood 17. Rock. 11.
 \ddagger Comes from N. 7 points W. Ganges 200 paces off.
 § It comes from S. 1 point W. Ganges 100 paces off.
 || Slight rain. Snowy mountains on all sides, and apparently very near. In the middle of the night much snow fell. In the morning the whole forest, and the surface of the ground and roofs of houses, were covered with snow. Halted till noon of next day.

[^25]: * The stream comes from N. 7 points E.
 \dagger A stone representing Mahádéva, on a mountain said to be Cailks, was in sight from Cachórá, bearing N. 5 points E.
 t Five cubits above the water.
 § At the Ghát of Dherali. The water rises within 5 cubits of the bridge. The Ganges is now on the left hand.
 || Containing a stone linga to represent the deity. It was buried in the sand. The temple said to have been founded by Sancardehdrya. Other houses to the number of five or six.

 I Containing near 25 huts, of which only 5 inhabited.

